Mechanisms of Particulate Toxicity: Findings of the Three Campus Study

July 22, 2004

California Air Resources Board

California Environmental Protection Agency

Background

- Ambient particulate matter (PM) has been associated with adverse health effects
 - New California standards for PM
- Biological mechanisms are largely unknown
- Three interrelated studies investigated possible mechanisms for PM adverse health effects
 - UC Davis, UC Irvine, and UCSF

Study Design

Subjects/Models

- UC Davis: rat model of allergic airway disease

UC Irvine: rat model of elderly humans

– UCSF: asthmatic adults

Exposure Conditions

- 4-6 hour exposures on single or multiple days
- ~250 μg/m³ PM (ammonium nitrate & elemental carbon)
- PM plus 0.2 ppm ozone (O₃)

Endpoints

- Airway inflammation & lung function
- Heart rate, blood pressure & heart rate variability

Key Findings

UC Davis (allergic rats)

- PM exposure did not enhance allergic airway inflammation
- PM exposure increased epithelial cell proliferation (lung damage)

UC Irvine (elderly rats)

- Multi-day PM exposure decreased blood pressure and heart rate variability
- No cardiovascular responses from single day exposures

Key Findings (cont'd)

UCSF (asthmatic adults)

- Airway inflammatory changes confined to PM plus O₃ exposures
- 4-hour exposure to PM alone induced a small decrease in lung function
- ◆ Exposure to PM plus O₃, was associated with significant changes in heart rate variability

Conclusions

Particulate matter (ammonium nitrate plus elemental carbon) induces adverse effects in:

- Animal model of allergic airway disease
- Animal model of the elderly
- Asthmatic humans exposed to PM plus O₃

Results support link between PM and adverse health effects

